LXGram in the Shared Task "Comparing Semantic Representations" STEP 2008

António Branco ${ }^{1}$ Francisco Costa ${ }^{1}$
${ }^{1}$ Universidade de Lisboa

September 20, 2008

Outline

1 System Description

2 Semantic Formalism

3 Sample Text

4 Performance in the Shared Task

1 System Description

2 Semantic Formalism

3 Sample Text

4 Performance in the Shared Task

System Description

- LXGram

■ Hand-crafted precision grammar for Portuguese
■ Deep linguistic processing
■ HPSG framework [Pollard and Sag, 1994]
■ MRS format of semantic representations [Copestake et al., 2005]
■ Developed in the LKB [Copestake, 2002]
■ Size of the grammar:
■ 24484 lines of code (including comments)

- 53 syntax rules
- 40 lexical rules
- 3154 total types
- 414 types for lexical items
- 2718 hand-built lexical entries

1 System Description

2 Semantic Formalism

3 Sample Text

4 Performance in the Shared Task

Semantic Formalism

■ Minimal Recursion Semantics (MRS)

Semantic Formalism

■ Minimal Recursion Semantics (MRS)
■ Underspecification of scope

Semantic Formalism

■ Minimal Recursion Semantics (MRS)
■ Underspecification of scope
■ Easy to represent with feature structures

$$
\begin{aligned}
& \left\langle h_{0},\left\{h_{1}: \operatorname{every}\left(x, h_{2}, h_{3}\right), \quad h_{4}: \operatorname{man}(x),\right.\right. \\
& \left.h_{5}: a\left(y, h_{6}, h_{7}\right), h_{8}: \operatorname{book}(y), h_{9}: \operatorname{read}(x, y)\right\}, \\
& \left.\left\{h_{0}={ }_{q} h_{9}, h_{2}={ }_{q} h_{4}, h_{6}={ }_{q} h_{8}\right\}\right\rangle
\end{aligned}
$$

Semantic Formalism

■ Conjunction is represented by identity of handles

$$
\begin{gathered}
f a t(x) \wedge \operatorname{black}(x) \wedge \operatorname{cat}(x) \\
{\left[\operatorname { R E L S } \left\langle\left[\begin{array}{ll}
\text { LBL } & \frac{h 1}{} \\
\left.\left[\begin{array}{ll}
\text { PRED } & f a t \\
\text { ARG0 } & \boxtimes
\end{array}\right],\left[\begin{array}{ll}
\text { LBL } & \text { 囵 } \\
\text { PRED } & \text { black } \\
\text { ARG0 } & \boxed{\boxtimes}
\end{array}\right],\left[\begin{array}{ll}
\text { LBL } & \text { 囵 } \\
\text { PRED } & c a t \\
\text { ARG0 } & \boxtimes
\end{array}\right]\right\rangle
\end{array}\right.\right.\right.}
\end{gathered}
$$

■ No need to compute commutativity or associativity of conjunction when working with different languages

$$
\begin{aligned}
& f a t(x) \wedge \operatorname{black}(x) \\
& \operatorname{gato}(x) \wedge \operatorname{cat}(x) \\
& \text { preto }(x) \wedge \operatorname{gordo}(x) \\
& \text { cat } \quad \text { black } \quad \text { fat }
\end{aligned}
$$

Semantic Formalism

■ Conjunction is represented by identity of handles
■ Neo-davidsonian representation of events

$$
\begin{gathered}
\text { "arrives today" } \\
\operatorname{arrive}\left(e_{1}, x\right) \wedge \operatorname{today}\left(e_{2}, e_{1}\right) \\
\operatorname{RELS}\left\langle\left[\begin{array}{ll}
\text { LBL } & \boxed{h 1} \\
\text { PRED } & \text { arrive } \\
\text { ARG0 } & \boxed{e 2} \\
\text { ARG1 } & \boxed{x}
\end{array}\right],\left[\begin{array}{ll}
\operatorname{LBL} & h 1 \\
\text { PRED } & \text { today } \\
\text { ARG0 } & e 4 \\
\text { ARG1 } & \boxed{e 2}
\end{array}\right]\right\rangle
\end{gathered}
$$

Semantic Formalism

■ Conjunction is represented by identity of handles
■ Neo-davidsonian representation of events

- Generalized quantifiers
"John sees it"

Semantic Formalism

■ Conjunction is represented by identity of handles
■ Neo-davidsonian representation of events
■ Generalized quantifiers
■ Naming convention for predicate names

■ Initial underscore for relations that correspond to lexical items
■ Lemma
■ Part of speech
■ Optional sense field
■ _rel suffix

$$
\begin{gathered}
\text { _house_n_rel } \\
\text { _different_a_from_rel }
\end{gathered}
$$

Semantics Produced by LXGram

■ No encoding of thematic roles
■ No anaphora resolution
■ No general word sense disambiguation

- Word sense can be disambiguated in some cases if it has morpho-syntactic correlates and they are present in a given input sentence.
E.g.: Pt nabo $=$ En turnip, incompetent person

2 lexical entries (different predicate names), sencond one can inflect for gender
If "naba" (fem. form) occurs in the input, it can be disambiguated All occurrences of "nabo" will make the grammar posit multiple analyses

Semantics Produced by LXGram

■ No encoding of thematic roles
■ No anaphora resolution
■ No general word sense disambiguation

- All morphological information is encoded directly under the features of events and referential indices (e-type variables)

■ tense, aspect, mood

$$
\left.\left[\begin{array}{ll}
\text { LBL } & \text { 囵 } \\
\text { PRED } & \text {-arrive_v_rel } \\
\text { ARG0 } & \text { 园 } 2\left[\mathrm{E}\left[\begin{array}{ll}
\text { TENSE } & \text { tense } \\
\text { ASPECT } & \text { aspect } \\
\text { MOOD } & \text { mood }
\end{array}\right]\right.
\end{array}\right]\right]
$$

Semantics Produced by LXGram

■ No encoding of thematic roles
■ No anaphora resolution
■ No general word sense disambiguation

- All morphological information is encoded directly under the features of events and referential indices (e-type variables)
- tense, aspect, mood
- person, number, gender

$$
\left[\begin{array}{ll}
\text { LBL } & \text { 图 } \\
\text { PRED } & \text {-house_n_rel } \\
\text { ARG0 } & \text { 苜2 }
\end{array}\left[\begin{array}{lll}
\text { PNG }\left[\begin{array}{ll}
\text { PERSON } & \text { person } \\
\text { NUMBER } & \text { number } \\
\text { GENDER } & \text { gender }
\end{array}\right]
\end{array}\right]\right]
$$

1 System Description

2 Semantic Formalism

3 Sample Text

4 Performance in the Shared Task

Sample Text

- Text 4

■ Adapted from newspaper text
■ 5 sentences, 10-26 words long, avg. 18.6 words
■ English: 11-29 words, avg. 21.8 words
■ Interesting phenomena:

- relative clauses
- noun ellipsis
- null subjects (in the Portuguese version)
- coordination
- intersective and non-intersective adjectives
- relational nouns with realized and missing complements

■ . . .

1 System Description

2 Semantic Formalism

3 Sample Text

4 Performance in the Shared Task

Initial Results

■ 7 texts, 30 sentences total

- Shared Task data translated into Portuguese by the authors
- Translations as literal as possible

■ Sentence length: 4-49 words, avg. 19.1 words
■ (English: 4-47 words, avg. 18.5 words)
■ Initial results

- 0% coverage on the other 6 texts of the shared task

■ 16.7% coverage overall
■ Causes:
■ unknown words

- unimplemented phenomena
- Lexicon and grammar expansion

Grammar Expansion

■ Added 97 lexical entries

- 10 new lexical types

■ Added 3 new syntax rules
■ NP apposition

- an idiomatic type of temporal expressions
- subject clitics
- Some constructions deliberately not implemented

■ Wh- questions

Final Results

■ Exhaustive search
■ Best parse chosen manually

- 20 sentences parsed (66.7%)

■ 1-3162 analyses per sentence, avg. 245

- 5KB-1.1 GB memory per sentence

■ 253 K unification operations total

Discussion of the Results

■ No standard way of representing intensionality in MRS
"Researchers have been looking for other cancers that may be caused by viruses." (Text 2)

Discussion of the Results

■ No standard way of representing intensionality in MRS
■ PPs attaching higher than determiners
"federal government interest and tax incentives." (Text7)
Pt o interesse e os benefícios fiscais [do governo federal] gloss the interest and the incentives tax of the government federal

Discussion of the Results

■ No standard way of representing intensionality in MRS
■ PPs attaching higher than determiners
■ Restrictive and non-restrictive relative clauses
"We would like our school to work similarly to the French ones, [which live from donations (...) and even from the raffles [that children sell at school.]]" (Text 4)

Discussion of the Results

■ No standard way of representing intensionality in MRS
■ PPs attaching higher than determiners
■ Restrictive and non-restrictive relative clauses
■ Phenomena beyond the scope of the grammar
"a crewman (...) yelled into the phone, "I have a problem here. I am not ready yet." (Text 5)

References

Copestake, A., Flickinger, D., Sag, I. A., and Pollard, C., 2005. Minimal Recursion Semantics: An introduction. Journal of Research on Language and Computation, 3(2-3):281-332.

Copestake, A., 2002. Implementing Typed Feature Structure Grammars. CSLI Publications, Stanford.

Pollard, C. and Sag, I., 1994. Head-Driven Phrase Structure Grammar. Chicago University Press and CSLI Publications, Stanford.

