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Motivation

Deriving domain-specific classes for verb arguments

I Goal: Obtain domain-specific semantic classes for verbs & their
arguments

I Why?
I Verb arguments important in NLP (WSD, ambiguity resolution)

e.g. ‘Flying planes can be dangerous’ vs ‘Swallowing apples can
be dangerous’

I WordNet & FrameNet often unable to cater for domain-specific
senses

I Our hypothesis: Better to induce verb sense & semantic types
automatically from the data of domain of interest

I How: Cluster verbs & their arguments simultaneously
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Motivation

Outline of the Talk

I Background to semantic classification

I Method for clustering verbs & their arguments to obtain
semantic classes

I Interpretation of the semantic classes

I Results & Evaluation

I Future Work
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Related Work

I Literature on acquiring semantic classes extensive

I Mainly motivated by WSD, clustering nouns or verbs
I Most relevant to our work:

I [SchulteimWalde 2003] method for clustering German verbs by
linguistically motivated feature selection

I [Korhonen et al 2006] cluster verbs from biomedical domain
I [Gamallo et al 2005] perform dual clustering of words and their

lexico-syntactic contexts. Create lexicon of words &
requirements applied to PP by clustering similar syntactic
positions.

I [Pustejovsky et al 2004] combine selection contexts for verbs to
form CPA patterns semi-automatically.
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Overview of our approach
Interpreting semantic classes

Investigation into automated verb induction

I Do syntactic/semantic analysis of corpus for
predicate-argument identification

I For a given verb, find head nouns occurring as subj, obj, iobj

I Cluster the verb argument slots together according to shared
filler nouns →

I Noun clusters characterising semantic types of argument slots

I Side effect: clustering verbs with similar slot

I Verb class induction: e.g. ‘admit’, ‘deny’ clustered together if
their arg share the same filler words (e.g. obj ‘wrongdoing’ )
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Overview of our approach
Interpreting semantic classes

The Corpus & pre-processing

I Domain of application: Financial News

I Corpus: WSJ section of Penn Treebank II

I Why? Predicate-argument structures easily accessible.

I Corpus Statistics: 2454 articles (300,000 words), 2798 distinct
verb predicates

I Pre-processing:
I Obtained predicate-argument structures using

[Liakata & Pulman 2002].
I Boosting of low frequency verbs
I Merging together arguments that are NEs: person names,

companies, locations, numeric expressions etc.
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Overview of our approach
Interpreting semantic classes

Clustering argument slots of verbs (1)

We assume: Argument slots of predicates can be characterised by
their filler words like a document is characterised by the words it
contains.

VERB-ARG FILLER WORDS/FREQ
invest-subj person-394,company-86,investor-29,fund-20,..
invest-obj money-204,person-172,percentage-80,price-36,..
invest-iobj proposition-63,share-3,money-2,loan-2,..
give-subj person-7519,company-1889,analyst-296,location-211,..
give-obj person-605,percentage-350,money-261,agreement-86,..
give-iobj proposition-610,person-6,money-4,offer-3,..

Therefore: To cluster verb-argument slots together, represent them using
Vector Space Model (VSM) & compare their filler words
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Overview of our approach
Interpreting semantic classes

Clustering argument slots of verbs (2)

VERB-ARG freq of FILLER WORDS as features

person company analyst percentage ..
invest-subj 394 86 13 4..
invest-obj 173 43 0 82..
invest-iobj 1 0 0 0..
give-subj 7519 1889 296 43 ..
give-obj 605 45 9 350..
give-iobj 6 2 0 0

I A matrix containing all verb-arg slots (8,394) as rows and all possible
word fillers (32,990) as columns is very sparse.

I Feature selection is required to reduce size of matrix.

I Clustering using Autoclass
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Overview of our approach
Interpreting semantic classes

Autoclass system

I [Cheeseman & Stutz 1995] is probabilistic clustering method.

I Autoclass is an extension of the mixture model as each instance
can be characterised by multiple attributes

I Assumes instances of each cluster follow probability distribution

I Clustering problem is given number of clusters find the
parameters of the distributions

I Input data in matrix format

I Why Autoclass?
I Number of clusters/classes unknown
I Probabilistic membership to multiple classes allowed

Maria Liakata†, Stephen Pulman†† †Department of Computer Science, University of Wales, Aberystwyth ††Computing Laboratory, University of Oxford †mal@aber.ac.uk, ††sgp@clg.ox.ac.ukAutomatic fine grained semantic classification for domain adaptation



Introduction
Background

Method
Evaluation

Future

Overview of our approach
Interpreting semantic classes

Clusters & their interpretation

I Best result: 32 classes, all verb-arg assigned deterministically
I Class measures: strength, weight, cross-entropy
I Most influential features: the ones corresponding to precise

concepts associated with specific contexts (freq*idf)
I Look at class members to interpret classes:

class(9,[‘climb_arg1’,‘add_up_arg1’,‘shoot_arg1’,‘balloon_arg1’,

‘deflate_arg1’,‘decline_arg1’,‘crash_arg1’,

‘sink_arg1’,‘slump_arg1’,‘blossom_arg1’,‘blow_arg1’,

‘blow_up_arg1’,‘come_up_arg1’,‘boost_arg2’,

‘set_off_arg1’,‘break_arg1’,‘soar_arg1’,‘come_down’’,

‘slip_arg1’,‘bud_arg1’,‘build_up_arg1’,

‘bump_up_arg1’,..)

I Class 9 as group of verbs: Verbs showing sudden movement
and numeric change.

I Class 9 as implicit group of nouns:‘Financial indicators’.
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Overview of our approach
Interpreting semantic classes

From noun clusters to semantic typing

I Nouns arg to several verbs therefore belong to more than one
class. Look at tf-idf for most representative class for a term

I Interpretation for each class: highest ranking items by
descending tf-idf

class label

0 proposition 16 percentage_stake_demand_money_rate_cash_capital

1 company_organisation 17 proposition_projection_rate

2 unspecified_someone 18 proposition_trading_pressure

3 proposition_truth_profit_patient_impact 19 proposition_table_corner_board_tide

4 percentage_money_income_revenue_stock_share_asset 20 proposition_percentage_public_private_high_low

5 percentage_mony_numXpression 21 government_civilian_unspecified

6 spokesman_company_person_analyst 22 proposition_unspecified_game_role_cash_company

7 income_revenue_net_rate_cost_stock 23 percentage_proposition_numXpression

8 place_step_effect_loss_action 24 percentage_proposition_date_profit

9 proposition_company_spokesman_revenue_analyst 25 director_court_partner_company

10 proposition_stake_rate_percentage 26 proposition_contract_profit_demand_requirement

11 proposition_percentage_sure_decision_bid 27 demand_problem_leak

12 year_percentage_quarter_index 28 year_month_time

13 reporter_dividend_money_percentage_analyst 29 proposition_money_percentage_share_stock

14 percentage_proposition_numXpression 30 year_time

15 proposition 31 fund_proposal_investor
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Overview of our approach
Interpreting semantic classes

Hierarchy for semantic typing

I Obtaining semantic type/labels for classes non-trial because of overlap
I Hierarchical clustering with overlap coefficient: sim(A, B) =

|A∩B|
min(|A|,|B|)
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Overview of our approach
Interpreting semantic classes

From semantic classes to patterns

I To facilitate the use & evaluation of classes for semantic type
assignment, we automatically created verb patterns:

ARG1 VERBv (ARG2) (ARG3)

I ‘One sense per corpus’ assumption, one pattern for each verb

I Patterns modelled on CPA patterns [Pustejovsky et al 2004]

I For example:
1 report 4 (10) equivalent to:

[company organisation] report
[percentage money income revenue stock share asset]
[proposition stake rate percentage]
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Overview of our approach
Interpreting semantic classes

Example: patterns used to assign semantic types

Example: ‘That is the first time both indexes dropped by
double-digit percentages.’

I Text to assign semantic type to: ‘indexes dropped by
percentages’

I relevant pattern: [9 drop 8 28 ]

I Check: Does ‘index’ have class 9? Does ‘percentage’ have
class 28?

I Check: How ‘close’ are class 9 & the actual class of ‘index’?
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Algorithm for the evaluation of semantic patterns

I Preliminary evaluation on two articles WSJ, FT March 2008
I Parsed the articles using CC-Tools, obtained subj,obj and iobj

dependencies → evaluation set

For each verb-argument pair token in the evaluation set:

1. Look for a pattern in the database for that verb (Recall cnt + 1)

2. Obtain the type that the pattern assigns to the argument

3. Get the correct type (3 with highest freq out of 10 with highest tf-idf)

4. If type assigned matches any of the 3 classes-semantic
types,assignment correct.

5. Otherwise look at cluster dendrogram and find distance btw correct
and returned types.

6. Proceeded to the next verb-argument pair.
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Subsection of the class dendrogram
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Example: evaluation of assignment

I Example 1: ‘The index is calculated using mortgage loans of
$417,000 or less.’

I Example 2: ‘Ofheo oversees the government-sponsored
mortgage-finance companies Fannie Mae and Freddie Mac’.

RASP-like dependencies (ncsubj, dobj, iobj) generated by CC-tools:

dobj using_4 loans_6

dobj oversees_1 Mae_7

ncsubj oversees_1 Ofheo_0

dobj oversees_1 Mac_10

The patterns: Ex1: [ 6 use 4 14] Ex2: [ 12 oversee 13 15 ]

I Ex1: For ‘loan’ the correct class is (4,7,11) -Correct!

I Ex2: For ‘Ofheo’ the correct class is (7,12,4) -Correct!

I Ex2: For ‘Mac’,‘Mae’ the correct class is (6,9,1) -Wrong.
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Results

verbs verb-arg recall exact match
WSJ 46 78 78/78 33/78 (43%)
FT 24 53 53/53 21/53 (39.6%)

distance 1 distance 2 distance 3
WSJ 41/78 (53%) 55/78 (70.5%) 60/78 (76.9%)
FT 26/53 (49%) 30/53 (56.6%) 33/53 (62.2%)
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Conclusion & Future Work

I Method for for automatically acquiring domain-specific
selectional restrictions for verbs

I Promising initial results

I Extend to biomedical domain

I Obtain parses and LFs for new texts (using CC-tools and Boxer)

I Try different clustering method and feature selection
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