Automatic fine grained semantic classification for domain adaptation

Maria Liakata[†], Stephen Pulman^{††} †Department of Computer Science, University of Wales, Aberystwyth ††Computing Laboratory, University of Oxford †mal@aber.ac.uk, ††sgp@clg.ox.ac.uk

STEP 2008, Venice

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

Deriving domain-specific classes for verb arguments

- Goal: Obtain domain-specific semantic classes for verbs & their arguments
- Why?
 - Verb arguments important in NLP (WSD, ambiguity resolution) e.g. 'Flying planes can be dangerous' vs 'Swallowing apples can be dangerous'
 - WordNet & FrameNet often unable to cater for domain-specific senses
- Our hypothesis: Better to induce verb sense & semantic types automatically from the data of domain of interest
- **How:** Cluster verbs & their arguments simultaneously

Motivation

Outline of the Talk

- Background to semantic classification
- Method for clustering verbs & their arguments to obtain semantic classes
- Interpretation of the semantic classes
- Results & Evaluation
- Future Work

(4回) (1日) (日)

Related Work

- Literature on acquiring semantic classes extensive
- Mainly motivated by WSD, clustering nouns or verbs
- Most relevant to our work:
 - [SchulteimWalde 2003] method for clustering German verbs by linguistically motivated feature selection
 - ▶ [Korhonen et al 2006] cluster verbs from biomedical domain
 - [Gamallo et al 2005] perform dual clustering of words and their lexico-syntactic contexts. Create lexicon of words & requirements applied to PP by clustering similar syntactic positions.
 - [Pustejovsky et al 2004] combine selection contexts for verbs to form CPA patterns semi-automatically.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Overview of our approach Interpreting semantic classes

・ 同 ト ・ ヨ ト ・ ヨ ト

Investigation into automated verb induction

 Do syntactic/semantic analysis of corpus for predicate-argument identification

Overview of our approach Interpreting semantic classes

Investigation into automated verb induction

- Do syntactic/semantic analysis of corpus for predicate-argument identification
- ► For a given verb, find head nouns occurring as subj, obj, iobj

- 4 同 ト 4 ヨ ト 4 ヨ ト

Overview of our approach Interpreting semantic classes

Investigation into automated verb induction

- Do syntactic/semantic analysis of corpus for predicate-argument identification
- ▶ For a given verb, find head nouns occurring as subj, obj, iobj
- \blacktriangleright Cluster the verb argument slots together according to shared filler nouns \rightarrow

- 4 同 6 4 日 6 4 日 6

Overview of our approach Interpreting semantic classes

Investigation into automated verb induction

- Do syntactic/semantic analysis of corpus for predicate-argument identification
- ► For a given verb, find head nouns occurring as subj, obj, iobj
- ► Cluster the verb argument slots together according to shared filler nouns →
- Noun clusters characterising semantic types of argument slots

Overview of our approach Interpreting semantic classes

Investigation into automated verb induction

- Do syntactic/semantic analysis of corpus for predicate-argument identification
- ► For a given verb, find head nouns occurring as subj, obj, iobj
- ► Cluster the verb argument slots together according to shared filler nouns →
- Noun clusters characterising semantic types of argument slots
- Side effect: clustering verbs with similar slot

Overview of our approach Interpreting semantic classes

Investigation into automated verb induction

- Do syntactic/semantic analysis of corpus for predicate-argument identification
- ► For a given verb, find head nouns occurring as subj, obj, iobj
- ► Cluster the verb argument slots together according to shared filler nouns →
- Noun clusters characterising semantic types of argument slots
- Side effect: clustering verbs with similar slot
- Verb class induction: e.g. 'admit', 'deny' clustered together if their arg share the same filler words (e.g. obj 'wrongdoing')

Overview of our approach Interpreting semantic classes

The Corpus & pre-processing

- **Domain of application:** Financial News
- Corpus: WSJ section of Penn Treebank II
- Why? Predicate-argument structures easily accessible.
- Corpus Statistics: 2454 articles (300,000 words), 2798 distinct verb predicates
- Pre-processing:
 - Obtained predicate-argument structures using [Liakata & Pulman 2002].
 - Boosting of low frequency verbs
 - Merging together arguments that are NEs: person names, companies, locations, numeric expressions etc.

Overview of our approach Interpreting semantic classes

Clustering argument slots of verbs (1)

<u>We assume</u>: Argument slots of predicates can be characterised by their filler words like a document is characterised by the words it contains.

VERB-ARG	FILLER WORDS/FREQ
invest-subj	person-394,company-86,investor-29,fund-20,
invest-obj	money-204, person-172, percentage-80, price-36,
invest-iobj	proposition-63, share-3, money-2, loan-2,
give-subj	person-7519, company-1889, analyst-296, location-211,
give-obj	person-605, percentage-350, money-261, agreement-86,
give-iobj	proposition-610,person-6,money-4,offer-3,

Therefore: To cluster verb-argument slots together, represent them using Vector Space Model (VSM) & compare their filler words

Maria Liakata[†], Stephen Pulman^{††} [†]Department of Automatic fine grained semantic classification for domain adap

Overview of our approach Interpreting semantic classes

Clustering argument slots of verbs (2)

VERB-ARG freq of FILLER WORDS as feature				features
	person	company	analyst	percentage
invest-subj	394	86	13	4
invest-obj	173	43	0	82
invest-iobj	1	0	0	0
give-subj	7519	1889	296	43
give-obj	605	45	9	350
give-iobj	6	2	0	0

- A matrix containing all verb-arg slots (8,394) as rows and all possible word fillers (32,990) as columns is very sparse.
- Feature selection is required to reduce size of matrix.
- Clustering using Autoclass

(ロ) (同) (E) (E) (E)

Overview of our approach Interpreting semantic classes

Autoclass system

- ▶ [Cheeseman & Stutz 1995] is probabilistic clustering method.
- Autoclass is an extension of the mixture model as each instance can be characterised by multiple attributes
- Assumes instances of each cluster follow probability distribution
- Clustering problem is given number of clusters find the parameters of the distributions
- Input data in matrix format

Why Autoclass?

- Number of clusters/classes unknown
- Probabilistic membership to multiple classes allowed

イロン イヨン イヨン イヨン

Overview of our approach Interpreting semantic classes

Clusters & their interpretation

- Best result: 32 classes, all verb-arg assigned deterministically
- Class measures: strength, weight, cross-entropy
- Most influential features: the ones corresponding to precise concepts associated with specific contexts (freq*idf)
- Look at class members to interpret classes:

- Class 9 as group of verbs: Verbs showing sudden movement and numeric change.
- Class 9 as implicit group of nouns: 'Financial indicators'.

Maria Liakata[†], Stephen Pulman^{††} [†]Department of Automatic fine grained semantic classification for domain adap

Overview of our approach Interpreting semantic classes

From noun clusters to semantic typing

- Nouns arg to several verbs therefore belong to more than one class. Look at tf-idf for most representative class for a term
- Interpretation for each class: highest ranking items by descending tf-idf

class label

- 0 proposition
- 1 company_organisation
- 2 unspecified_someone
- 3 proposition truth profit patient impact
- 5 percentage_mony_numXpression
- 6 spokesman_company_person_analyst
- 7 income revenue net rate cost stock
- 8 place_step_effect_loss_action
- 9 proposition_company_spokesman_revenue_analyst
- 10 proposition stake rate percentage
- 11 proposition_percentage_sure_decision_bid
- 12 year_percentage_quarter_index
- 13 reporter_dividend_money_percentage_analyst
- 14 percentage_proposition_numXpression
- 15 proposition

- 16 percentage_stake_demand_money_rate_cash_capital
- 17 proposition_projection_rate
- 18 proposition_trading_pressure
- 19 proposition table corner board tide
- 4 percentage_money_income_revenue_stock_share_asset 20 proposition_percentage_public_private_high_low
 - 21 government_civilian_unspecified
 - 22 proposition_unspecified_game_role_cash_company
 - 23 percentage_proposition_numXpression
 - 24 percentage_proposition_date_profit
 - 25 director_court_partner_company
 - 26 proposition_contract_profit_demand_requirement
 - 27 demand_problem_leak
 - 28 year_month_time
 - 29 proposition_money_percentage_share_stock
 - 30 year time
 - 31 fund_proposal_investor

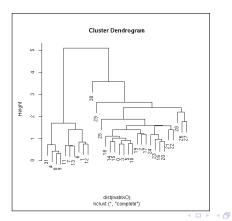
Maria Liakata[†], Stephen Pulman^{††} [†]Department of

・ロン ・回と ・ヨン・ Automatic fine grained semantic classification for domain adap

Overview of our approach Interpreting semantic classes

Hierarchy for semantic typing

Obtaining semantic type/labels for classes non-trial because of overlap
 Hierarchical clustering with overlap coefficient: sim(A, B) = |A \cap B|/min(|A|,|B|)



Maria Liakata[†], Stephen Pulman^{††} **†Department of**

Automatic fine grained semantic classification for domain adapt

Overview of our approach Interpreting semantic classes

From semantic classes to patterns

To facilitate the use & evaluation of classes for semantic type assignment, we automatically created verb patterns:

ARG1 VERBv (ARG2) (ARG3)

- 'One sense per corpus' assumption, one pattern for each verb
- > Patterns modelled on CPA patterns [Pustejovsky et al 2004]
- ► For example:
 - 1 report 4 (10) equivalent to:

[company_organisation] **report** [percentage_money_income_revenue_stock_share_asset] [proposition_stake_rate_percentage]

Overview of our approach Interpreting semantic classes

Example: patterns used to assign semantic types

Example: 'That is the first time both indexes dropped by double-digit percentages.'

- Text to assign semantic type to: 'indexes dropped by percentages'
- relevant pattern: [9 drop 8 28]
- Check: Does 'index' have class 9? Does 'percentage' have class 28?
- ▶ Check: How 'close' are class 9 & the actual class of 'index'?

Algorithm for the evaluation of semantic patterns

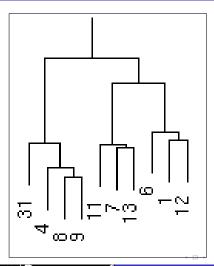
- Preliminary evaluation on two articles WSJ, FT March 2008
- ► Parsed the articles using CC-Tools, obtained subj,obj and iobj dependencies → evaluation set

For each verb-argument pair token in the evaluation set:

- 1. Look for a pattern in the database for that verb (Recall cnt + 1)
- 2. Obtain the type that the pattern assigns to the argument
- 3. Get the correct type (3 with highest freq out of 10 with highest tf-idf)
- 4. If type assigned matches any of the 3 classes-semantic types, assignment correct.
- 5. Otherwise look at cluster dendrogram and find distance btw correct and returned types.
- 6. Proceeded to the next verb-argument pair.

Maria Liakata[†], Stephen Pulman^{††} [†]Department of Automatic fine grained semantic classification for domain adap

Subsection of the class dendrogram



Maria Liakata[†], Stephen Pulman^{††} [†]Department of Automatic fine grained semantic classification for domain adap

-

Example: evaluation of assignment

- Example 1: 'The index is calculated using mortgage loans of \$417,000 or less.'
- Example 2: 'Ofheo oversees the government-sponsored mortgage-finance companies Fannie Mae and Freddie Mac'.

RASP-like dependencies (ncsubj, dobj, iobj) generated by CC-tools:

```
dobj using_4 loans_6
dobj oversees_1 Mae_7
ncsubj oversees_1 Ofheo_0
dobj oversees_1 Mac_10
```

The patterns: Ex1: [6 use 4 14] Ex2: [12 oversee 13 15]

- ► Ex1: For 'loan' the correct class is (4,7,11) -Correct!
- ► Ex2: For 'Ofheo' the correct class is (7,12,4) -Correct!
- ► Ex2: For 'Mac', 'Mae' the correct class is (6,9,1) Wrong.

Maria Liakata[†], Stephen Pulman⁺⁺ [†]Department of Automatic fine grained semantic classification for domain adap

	verbs	verb-arg	recall	exact match
WSJ	46	78	78/78	33/78 (43%)
FT	24	53	53/53	21/53 (39.6%)

	distance 1	distance 2	distance 3
WSJ	41/78 (53%)	55/78 (70.5%)	60/78 (76.9%)
FT	26/53 (49%)	30/53 (56.6%)	33/53 (62.2%)

Maria Liakata[†], Stephen Pulman⁺⁺ ⁺Department of Automatic fine grained semantic classification for domain adap

Э

Conclusion & Future Work

- Method for for automatically acquiring domain-specific selectional restrictions for verbs
- Promising initial results
- Extend to biomedical domain
- Obtain parses and LFs for new texts (using CC-tools and Boxer)
- Try different clustering method and feature selection

・ 同 ト ・ ヨ ト ・ ヨ ト

P. Cheeseman and J. Stutz Bayesian classification (AutoClass): Theory and results. Advances in Knowledge Discovery and Data Mining AAAI Press, 153–180, Menlo Park, CA

- P. Gamallo, A. Agustini and G.P. Lopes Clustering Syntactic Positions with Similar Semantic Requirements Computational Linguistics, 31(1), 107-146
- A. Korhonen, Y. Krymolowski, N. Collier Automatic Classification of Verbs in Biomedical Texts Proceedings of AC-COLING 2006, Sydney, Australia

- 4 同 6 4 日 6 4 日 6

- M. Liakata and S.G. Pulman Learning Theories from Text COLING 2004, Geneva, Switzerland
- J. Pustejovsky, P. Hanks and A. Rumshisky Automated Induction of Sense in Context COLING 2004, Geneva, Switzerland, 55-58
- S.Schulte im Walde

Experiments on the Choice of Features for Learning Verb Classes

Proceedings of EACL 2003, Budapest, Ungarn

・ 同 ト ・ ヨ ト ・ ヨ ト

Acknowledgements

Thanks to Rachele de Felice for her assistance, Stephen Clark & Rada Mihalcea for their useful comments.

This work was partially funded by:

- the Companions project
 (http://www.companions-project.org)
- the ART Project (http://www.aber.ac.uk/compsci/Research/bio/art/)

- 4 同 ト 4 ヨ ト 4 ヨ ト