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Abstract
In this paper, we present a general method for optimizing a tu-
toring system with a target application in the domain of second
language acquisition. More specifically, the optimisation pro-
cess aims at learning the best sequencing strategy for switch-
ing between teaching and evaluation sessions so as to maximise
the increase of knowledge of the learner in an adapted manner.
The most important feature of the proposed method is that it is
able to learn an optimal strategy from a fixed set of data, col-
lected with a hand-crafted strategy. This way, no model (nei-
ther cognitive nor probabilistic) of learners is required but only
observations of their behavior when interacting with a simple
(non-optimal) system. To do so, a particular batch-mode ap-
proximate dynamic programming algorithm is used, namely the
Least Square Policy Iteration algorithm. Experiments on simu-
lated data provide promising results.
Index Terms: Tutoring systems, approximate dynamic pro-
gramming

1. Introduction
The work described in this paper takes place in the context of
a larger project1 aimed at developing an artificial tutoring sys-
tem for second language acquisition (especially for French and
German languages). In the framework of this project, a seri-
ous game environment (I-FLEG) [1] has been designed for in-
teractively learning French as a second language. The game
is integrated in Second Life and exploits the 3D virtual reality
environment. Thanks to this environment, many important de-
sired features of computer-aided learning technologies can be
obtained. Among them, personalization of the learning process
is the focus of this paper. In addition, the web-based technology
facilitates the collection of big amounts of data that can be used
by data-driven methods for optimization.

It has been proven earlier that personalization of the tutor-
ing method is very important in the relationship between teach-
ers and learners [2]. Ideally, each learner should receive adapted
courses that allow reaching the best of his/her capabilities. It
is natural to think that the ideal situation could be met thanks
to computer-aided learning technologies installed on personal
computers or accessible through the web. Yet, the actual situa-
tion is far from being optimal since current commercial systems
are designed for a large public and not for each student. Even
worst, they address an average profile which generally simply
doesn’t exist. It is particulary true in the context of second lan-
guage acquisition where the errors can be very dependent on the
learner because of lexical confusions and pronunciation errors
that may be caused by cultural and educational reasons. It is
therefore important to design systems that are able to adapt their
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behavior to the particular profile of the learner. To do so, they
have to react online, during their interaction with the learner.

Here, we will suppose that the degree of freedom of the
interface stands in the sequencing of teaching and evaluation
phases for a specific item to teach. A teaching phase will aim at
improving the knowledge of the learner about this item while an
evaluation phase will aim at quantifying this knowledge. Thus,
in a given situation defined w.r.t. the history of the interaction
with the learner, the system will have to take a decision between
these two choices. The adaptation takes place at the level of the
sequencing of these decisions which should be different from
one learner to another. The problem of adapting the system’s
behavior to the learner can thus be seen as a sequential decision
making problem.

In this paper, we propose to solve this problem thanks to
a machine learning method (namely Reinforcement Learning
(RL) [3]). Especially, we used a batch-mode RL algorithm
(namely the Least Square Policy Iteration (LSPI) [4]) to solve
this problem from a fixed set of data. Methods of this kind
have been recently used successfully in the domain of spoken
dialogue systems optimisation [5]. Working off-line on a fixed
set of data is an important feature that distinguishes this work
from previous attempts to use RL in the context of tutoring sys-
tems [6, 7]. Indeed, unlike this work, the method proposed here
doesn’t require any modeling of the learner or any direct interac-
tion with users while learning. Only data collected with a hand-
tuned system are enough or logs of deployed systems. There-
fore, the optimisation method doesn’t suffers from additional
modeling errors occurring when developing a learner simula-
tion method. Indeed, the impact of such models on the quality
of the optimized strategies is difficult to predict and some stud-
ies even report that totally random models may lead to better
strategies [8]. The same problems occur when modeling users
for training spoken dialogue systems [9]. Working on fixed sets
of data also prevents the real learners to serve as testers of im-
perfect systems that evolve on-line.

The rest of this paper is organized as follows. Section 2
presents the theoretical background of Reinforcement learning
and the LSPI algorithm. Then, Section 3 explains how the tu-
toring optimisation problem can be cast into the RL paradigm.
Preliminary experimental results are presented in Section 4 and
show the efficiency of the method on a simplified problem. Fi-
nally, Section 5 concludes.

2. Reinforcement Learning
Reinforcement Learning (RL) [3] is a general machine learning
paradigm aiming at solving sequential decision making prob-
lems. In the RL paradigm, an agent interacts with a system
which it tries to control. The system is assumed to be made up
of states and the control takes the form of actions performed



on the system. After each action performed by the agent, the
system steps from one state to another and generates an imme-
diate reward which is visible to the agent. The agent’s goal is to
learn a mapping from states to actions that will maximize some
cumulative function of rewards (long-term reward). Therefore,
the agent searches for the best sequence of actions and not for
actions that are locally optimal.

2.1. Markov Decision Processes

To solve the RL problem described above, the paradigm of
Markov Decision Processes (MDP) [10] is traditionally used.
An MDP is defined as a tuple {S,A,R, P, γ}, where S is the
set of all possible states, A is the set of actions, R is the reward
function, P is the set of Markovian transition probabilities and
γ is the discount factor. A strategy or a policy π is a mapping
from s ∈ S to a ∈ A. Given the policy π each state can be
associated to a value (V π : S → R) defined as the expected
discounted sum of rewards that can be obtained by an agent
over the infinite horizon starting from state s and following the
policy π:

V π(s) = E[

∞∑
k=0

γkrk|s0 = s, π].

This value function quantifies the quality of a given policy; it
is what the agent tries to maximize for each state. The state-
action value (or Q-) function (Qπ : S ×A→ R) adds a degree
of freedom for the choice of the first performed action:

Qπ(s, a) = E[

∞∑
i=0

γiri|s0 = s, a0 = a, π] (1)

Q∗(s, a) = E[

∞∑
i=0

γiri|s0 = s, a0 = a, π∗] (2)

Q∗(s, a) is theQ-function of the optimal policy π∗ which max-
imizes the value of each state (or state-action pair):

π∗ = argmax
π

V π = argmax
π

Qπ

The optimal policy is greedy respectively to the optimal state-
action value function Q∗:

π∗(s) = argmax
a∈A

Q∗(s, a).

Dynamic programming (DP) [11] aims at computing the opti-
mal policy π∗, using the Q-function as an intermediate and in
the case where the transition probabilities and the reward func-
tion are known. Especially, the policy iteration algorithm com-
putes the optimal policy in an iterative way. An initial policy is
arbitrarily set to π0. At iteration k, the policy πk−1 is evaluated,
that is the associated Q-function Qπk−1(s, a) is computed. To
do so, the Markovian property of the transition probabilities is
used to rewrite Eq. (1) as :

Qπ(s, a) = Es′|s,a[R(s, a, s′) + γQπ(s′, π(s′))]

= TπQπ(s, a) (3)

This is the so-called Bellman evaluation equation and Tπ is the
Bellman evaluation operator. Tπ is linear and eq. (3) therefore
defines a linear system. It can be solved in an efficient man-
ner by an iterative method using the fact that Qπ is the unique
fixed-point of the Bellman evaluation operator (Tπ being a con-
traction). Then the policy is improved, that is πk is greedy with
respect to Qπk−1 :

πk(s) = argmax
a∈A

Qπk−1(s, a) (4)

Evaluation and improvement steps are iterated until conver-
gence of πk to π∗ (which can be demonstrated to happen in
a finite number of iterations when πk = πk−1).

2.2. Approximate Dynamic Programming

Although it seems very appealing, the method proposed above
is hardly usable in real applications for two reasons. First, it as-
sumes that the transition probabilities and the reward function
are known. Practically, it is rarely feasible and especially in
the case of systems interacting with humans (that would require
predicting the human’s behavior). Most often, only examples of
interactions are available, through data collection and logging,
which are actually trajectories in the state-action space. It is
therefore mandatory to learn from a fixed set of data. Second,
policy iteration assumes that the Q-function can be exactly rep-
resented (its value can be stored in a table for each state-action
space so expression (3) represents a system of equations). How-
ever, in real world tutoring problems, state and action spaces
are often too large (even continuous) for such an assumption to
hold. Approximate Dynamic Programming (ADP) aims at esti-
mating the optimal policy from trajectories when the state space
is too large for a tabular representation. TheQ-function is there-
fore approximated by some parameterized function Q̂θ(s, a)
while the knowledge of the model is replaced by a database
of transitions. In this paper, a linear approximation of the Q-
function will be assumed:

Q̂θ(s, a) = θTφ(s, a) (5)

where θ ∈ Rp is a vector containing the parameters and φ(s, a)
is the set of p basis functions (or features). All functions that
can be expressed in this way define a so-called hypothesis space
H = {Q̂θ|θ ∈ Rp}. For example, Q̂θ can represent a polyno-
mial approximation or a radial basis function network, among
other possible schemes. Any function Q can be projected onto
this hypothesis space by a projection operator Π defined as

ΠQ = argmin
Q̂θ∈H

‖Q− Q̂θ‖2. (6)

The goal of the ADP algorithms is to compute the best set of
parameters θ given the basis functions and the available sam-
ples. This is a problem which is more complex than supervised
learning since what is observed is a set of rewards associated
to transitions while the Q-function has to be approximated. In
a supervised learning problem, the function to approximate is
observed (sometimes with additional noise).

2.2.1. Least-Squares Policy Iteration

Least-Squares Policy Iteration (LSPI) is such an ADP algo-
rithm [4]. LSPI is inspired by the policy iteration method and
interleaves policy evaluation and improvement steps. The im-
provement steps are the same as before (being greedy accord-
ing to the evaluated Q-function), but the evaluation step must
learn an approximate representation of the Q-function using
samples. In LSPI, this is done using the a modified off-policy
version of the Least-Squares Temporal Differences (LSTD) al-
gorithm [12].

LSTD aims at minimizing the distance between the approx-
imated Q-function Q̂θ and the projection onto the hypothe-
sis space of its image through the Bellman evaluation operator
ΠTπQ̂θ :

θπ = argmin
θ∈Rp

‖Q̂θ −ΠTπQ̂θ‖2 (7)



This can be interpreted as trying to minimize the difference be-
tween the two sides of the Bellman equation (eq. (3)) (which
should ideally be zero) in the hypothesis space. Because of the
approximation, this difference is most likely to be non-zero un-
less Q and ΠTπQ belong the the hypothesis space.

Practically, Tπ is not known (we don’t know the
transition probabilities), but a set of N transitions
{(sj , aj , rj , s′j)1≤j≤N} is available. LSTD therefore
solves the following optimization problem:

θπ = argmin
θ

N∑
j=1

CNj (θ, θπ) (8)

CNj (θ, θπ) = (rj + γQ̂θπ (s′j , π(s′j))− γQ̂θ(sj , aj))2

Thanks to the linear parametrization, an analytical solution can
be derived, which defines the LSTD algorithm:

θπ = (

N∑
j=1

φj∆φ
π
j )−1

N∑
j=1

φjrj (9)

with φj = φ(sj , aj)

and ∆φπj = φ(sj , aj)− γφ(s′j , π(s′j))

LSPI therefore works as follows. An initial policy π0 is
chosen. Then, at iteration k (with k > 1), the Q-function of
policy πk−1 is estimated using LSTD, and πk is greedy respec-
tively to this estimated Q-function. The algorithm terminates
when some stopping criterion is met (e.g., small differences be-
tween consecutive policies or associated Q-functions).

3. Tutoring as an MDP
As said in the introduction, personalization of a tutoring system
can be seen as a sequential decision making problem where an
agent should alternate teaching and evaluation phases. The use
of reinforcement learning for solving this optimization problem
has already been proposed in [6] and [7]. The work presented
in this paper differs by proposing a novel model but especially
by using a method that learns an optimal strategy from a fixed
set of data. Therefore, no interaction with learners is required
during learning and any system can be improved by using sim-
ple adequate logs. To find the optimal sequence of decisions
by means of reinforcement learning, one has to cast the tutor-
ing problem into the Markov Decision Processes paradigm and
thus define a set of states, a set of actions and a reward func-
tion (transition probabilities are not known but instead we have
a set of data obtained from the logs of the system). Concerning
actions, the casting is rather simple since there are two types of
actions :

• start a teaching phase;

• start an evaluation phase.

The state representation has to contain information about
the context of the interaction, that is the sufficient but necessary
information required to take a decision (so as to be compliant
with the Markov property). Here, the state should describe the
knowledge of the student. Yet this is not directly accessible.
Therefore it is modeled as a 2-dimensional vector :

• the first dimension is the correct answers rate the learner
has provided so far (a continuous value between 0 and 1);

• the second dimension is the number of teaching phases
the system has proposed so far (an integer).
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Figure 1: Result

Notice that this results in an hybrid representation of the
state space (continuous/discrete) which is totally different from
previous work and requires function approximation. The goal is
here to adapt the system to the capabilities of learners and not to
fix thresholds under which the learner is considered to fail (i.e.,
90% of correct answers in the work described in [7]).

Finally, the reward is provided by the correct answer rate of
the learner after each evaluation phase (a reward is obtained af-
ter each evaluation phase). Once again, the aim is to maximize
this rate according to the learner’s capabilities and also to accel-
erate the increase in the knowledge acquisition since the goal of
RL is to find a strategy increasing the sequence of rewards.

4. Experiment
Because data were not available at the time of writing this ar-
ticle, we have simulated interactions with a learner model in-
spired by [13]. The model is based on a set of probabilities mod-
eling the fact that the learner’s knowledge increases or not with
lessons and that s/he answers correctly to the tests by chance
or not. Yet, it is important to keep in mind that this model has
just been used to generate data which are compliant with our
state representation but is not explicitly taken into account in
the strategy learning method. From the RL algorithm point of
view, everything happens as if the data were generated by real
learners. Also it seemed to be a good mean to test the learnt
strategy in a statistically consistent manner. The data thus take
the form of logged interactions (an interaction being simply a
decision of the system followed by a reaction of the user). To
obtain the data, the simulated user has to interact with an initial
system implementing a simple hand-crafted interaction strategy.
The strategy used for data collection is a totally random pol-
icy that choses to perform evaluation or teaching phases with
the same probability of 50%. The LSPI algorithm presented in
Section 2.2.1 has then been applied to different data sets dif-
fering by their size. For each data set, an optimal policy has
been learnt. Results are presented on Figure 1. In this figure,
the value of the initial state (V π

∗
(s0)) (that is the discounted

cumulative reward (with γ = 0.9) obtained by the learner us-
ing the learnt policy) is traced w.r.t. the number of interactions
contained in the data set used by the LSPI algorithm. The goal
of this experiment is to identify the number of interactions re-
quired to learn a policy that outperforms simple handcrafted
policies. The performances of the learnt policies are compared
to those of the random policy used for data collection and to



those of a deterministic policy that alternates teaching and eval-
uation phases.

It is clear on the figure that when using 500 interactions
(remember that an interaction is not a complete tutoring session
but simply a decision followed by the learner reaction so 500
is a quite low number in terms of tutoring sessions), the learnt
policy is better that the random one (which was used to collect
data). Then, after 1000 interaction, the learnt policy becomes
better than the deterministic policy. So, using the logs of an
existing system can be used to learn a better policy without the
need of any other interaction. The obtained policy outperforms
largely the one that was used to generate the data.

One can notice that those results are obtained for one type
of student, modeled, as already said, by a fixed set of probabil-
ities. The value reached by the asymptotes in the three cases as
well as the gradient of the curve obtained with LSPI can thus
slightly differ from one student to another. One advantage of
learning tutoring strategies with LSPI is that, by construction,
the best policy will make the best of each student.

So as to measure the reproducibility of the learning (e.g. the
sensibility w.r.t. the dataset composition), LSPI has been run
100 times and than the learnt policy is tested 1000 times on the
simulated learner. The 95% confidence interval is also plotted
showing that the results are not very sensible to the randomness
of the data. This is quite important since in real applications,
one cannot control the quality of the data but has to use actual
logs. It appears that after 1500 interactions, the confidence in-
terval reduces and doesn’t change a lot afterward.

5. Conclusion
In this paper, a method for optimizing a tutoring system is pre-
sented. This optimisation problem is first expressed as a se-
quential decision making problem and than solved via a rein-
forcement learning algorithm. Because the behavior of learn-
ers is hard to predict, a model-free method is preferred. This
method only uses examples of interaction between learners and
a system close to the one we want to optimize. The learnt in-
teraction strategies are shown to outperform the basic strategies
used to collect the data.

In the near future, the data collection with real students will
start using the I-FLEG virtual environment. Therefore, an im-
mediate perspective is to collect the logs of this system so as
to learn optimal tutoring strategies. Also, we want to use other
efficient RL algorithms [14] able to use uncertainty about Q-
function parameters estimates [15] so as to improve the strategy
online (while the system is used) thanks to exploration strate-
gies that avoid disturbing the user. This method has already
been successfully applied to spoken dialogue management [16].

6. Acknowledgements
The work described in this paper was conducted as part of the
ALLEGRO project (www.allegro-project.eu), funded within the
EU INTERREG IVa program focusing on the development of
new technologies for foreign language learning.

7. References
[1] M. Amoia, C. Gardent, and L. Perez-Beltrachini, “A se-

rious game for second language acquisition,” in Proceed-
ings of the Third International Conference on Computer
Aided Education (CSEDU 2011), Noordwijkerout (The
Netherlands), 2011.

[2] B. S. Bloom, “Learning for mastery,” Evaluation com-
ment, vol. 1, no. 2, pp. 1–5, 1968.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning :
An Introduction. MIT Press, 1998.

[4] M. G. Lagoudakis and R. Parr, “Least-squares policy iter-
ation,” Journal of Machine Learning Research, vol. 4, pp.
1107–1149, 2003.

[5] O. Pietquin, M. Geist, S. Chandramohan, and H. Frezza-
Buet, “Sample-Efficient Batch Reinforcement Learning
for Dialogue Management Optimization,” ACM Transac-
tions on Speech and Language Processing, 2011, accepted
for publication - 24 pages.

[6] J. E. Beck, B. P. Woolf, and C. R. Beal, “ADVISOR :
A machine learning architecture for intelligent tutor con-
struction,” in Proceedings of the National Conference on
Articial Intelligence. Menlo Park, CA: MIT Press, 2000,
pp. 552–557.

[7] A. Iglesias, P. Martinez, R. Aler, and F. Fernandez,
“Learning teaching strategies in an adaptive and intelli-
gent educational system through reinforcement learning,”
Applied Intelligence, vol. 31, no. 1, pp. 89–106, 2009.

[8] H. Ai, J. R. Tetreault, and D. J. Litman, “Comparing
user simulation models for dialog strategy learning,” in
Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics
and Human Language Technologies, ser. NAACL-Short
’07. Stroudsburg, PA, USA: Association for Compu-
tational Linguistics, 2007, pp. 1–4. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1614108.1614109

[9] J. Schatzmann, M. N. Stuttle, K. Weilhammer, and
S. Young, “Effects of the user model on simulation-based
learning of dialogue strategies,” in Proceedings of work-
shop on Automatic Speech Recognition and Understand-
ing (ASRU’05), San Juan, Puerto Rico, December 2005.

[10] R. Bellman, “A markovian decision process,” Journal of
Mathematics and Mechanics, 1957.

[11] ——, Dynamic Programming, 6th ed. Dover Publica-
tions, 1957.

[12] S. J. Bradtke and A. G. Barto, “Linear Least-Squares algo-
rithms for temporal difference learning,” Machine Learn-
ing, vol. 22, no. 1-3, pp. 33–57, 1996.

[13] A. T. Corbett and J. R. Anderson, “Knowledge tracing :
Modeling the acquisition of procedural knowledge,” User
modeling and user-adapted interaction, vol. 4, no. 4, pp.
253–278, 1994.

[14] M. Geist and O. Pietquin, “Kalman Temporal Differ-
ences,” Journal of Artificial Intelligence Research (JAIR),
vol. 39, pp. 483–532, October 2010.

[15] ——, “Managing Uncertainty within the KTD Frame-
work,” in Proceedings of the Workshop on Active Learn-
ing and Experimental Design (AL&E collocated with AI-
STAT 2010), ser. Journal of Machine Learning Research
Conference and Workshop Proceedings, Sardinia (Italy),
2011, 12 pages - to appear.

[16] O. Pietquin, M. Geist, and S. Chandramohan, “Sam-
ple Efficient On-line Learning of Optimal Dialogue Poli-
cies with Kalman Temporal Differences,” in International
Joint Conference on Artificial Intelligence (IJCAI 2011),
Barcelona, Spain, July 2011, to appear.


